//! Benchmarks of QMDB variants on fixed-size values. //! //! While this benchmark involves updating a database with fixed-size values, we also include the db //! variants capable of handling variable-size values to gauge the impact of the extra indirection //! they perform. use commonware_cryptography::{Hasher, Sha256}; use commonware_parallel::ThreadPool; use commonware_runtime::{buffer::PoolRef, tokio::Context, RayonPoolSpawner}; use commonware_storage::{ kv::{Deletable as _, Updatable as _}, qmdb::{ any::{ ordered::{fixed::Db as OFixed, variable::Db as OVariable}, states::{MutableAny, UnmerkleizedDurableAny}, unordered::{fixed::Db as UFixed, variable::Db as UVariable}, FixedConfig as AConfig, VariableConfig as VariableAnyConfig, }, current::{ ordered::fixed::Db as OCurrent, unordered::fixed::Db as UCurrent, FixedConfig as CConfig, }, store::LogStore, }, translator::EightCap, }; use commonware_utils::{NZUsize, NZU16, NZU64}; use rand::{rngs::StdRng, RngCore, SeedableRng}; use std::num::{NonZeroU16, NonZeroU64, NonZeroUsize}; pub mod generate; pub mod init; pub type Digest = ::Digest; #[derive(Debug, Clone, Copy)] enum Variant { AnyUnorderedFixed, AnyOrderedFixed, AnyUnorderedVariable, AnyOrderedVariable, CurrentUnorderedFixed, CurrentOrderedFixed, } impl Variant { pub const fn name(&self) -> &'static str { match self { Self::AnyUnorderedFixed => "any::unordered::fixed", Self::AnyOrderedFixed => "any::ordered::fixed", Self::AnyUnorderedVariable => "any::unordered::variable", Self::AnyOrderedVariable => "any::ordered::variable", Self::CurrentUnorderedFixed => "current::unordered::fixed", Self::CurrentOrderedFixed => "current::ordered::fixed", } } } const VARIANTS: [Variant; 6] = [ Variant::AnyUnorderedFixed, Variant::AnyOrderedFixed, Variant::AnyUnorderedVariable, Variant::AnyOrderedVariable, Variant::CurrentUnorderedFixed, Variant::CurrentOrderedFixed, ]; const ITEMS_PER_BLOB: NonZeroU64 = NZU64!(50_000); const PARTITION_SUFFIX: &str = "any_fixed_bench_partition"; /// Chunk size for the current QMDB bitmap - must be a power of 2 (as assumed in /// current::grafting_height()) and a multiple of digest size. const CHUNK_SIZE: usize = 32; /// Threads (cores) to use for parallelization. We pick 8 since our benchmarking pipeline is /// configured to provide 8 cores. const THREADS: NonZeroUsize = NZUsize!(8); /// Use a "prod sized" page size to test the performance of the journal. const PAGE_SIZE: NonZeroU16 = NZU16!(16384); /// The number of pages to cache in the buffer pool. const PAGE_CACHE_SIZE: NonZeroUsize = NZUsize!(10_000); /// Default delete frequency (1/10th of the updates will be deletes). const DELETE_FREQUENCY: u32 = 10; /// Default write buffer size. const WRITE_BUFFER_SIZE: NonZeroUsize = NZUsize!(1024); /// Clean (Merkleized, Durable) Db type aliases for Any databases. type UFixedDb = UFixed; type OFixedDb = OFixed; type UVAnyDb = UVariable; type OVAnyDb = OVariable; type UCurrentDb = UCurrent; type OCurrentDb = OCurrent; /// Configuration for any QMDB. fn any_cfg(pool: ThreadPool) -> AConfig { AConfig:: { mmr_journal_partition: format!("journal_{PARTITION_SUFFIX}"), mmr_metadata_partition: format!("metadata_{PARTITION_SUFFIX}"), mmr_items_per_blob: ITEMS_PER_BLOB, mmr_write_buffer: WRITE_BUFFER_SIZE, log_journal_partition: format!("log_journal_{PARTITION_SUFFIX}"), log_items_per_blob: ITEMS_PER_BLOB, log_write_buffer: WRITE_BUFFER_SIZE, translator: EightCap, thread_pool: Some(pool), buffer_pool: PoolRef::new(PAGE_SIZE, PAGE_CACHE_SIZE), } } /// Configuration for current QMDB. fn current_cfg(pool: ThreadPool) -> CConfig { CConfig:: { mmr_journal_partition: format!("journal_{PARTITION_SUFFIX}"), mmr_metadata_partition: format!("metadata_{PARTITION_SUFFIX}"), mmr_items_per_blob: ITEMS_PER_BLOB, mmr_write_buffer: WRITE_BUFFER_SIZE, log_journal_partition: format!("log_journal_{PARTITION_SUFFIX}"), log_items_per_blob: ITEMS_PER_BLOB, log_write_buffer: WRITE_BUFFER_SIZE, bitmap_metadata_partition: format!("bitmap_metadata_{PARTITION_SUFFIX}"), translator: EightCap, thread_pool: Some(pool), buffer_pool: PoolRef::new(PAGE_SIZE, PAGE_CACHE_SIZE), } } fn variable_any_cfg(pool: ThreadPool) -> VariableAnyConfig { VariableAnyConfig:: { mmr_journal_partition: format!("journal_{PARTITION_SUFFIX}"), mmr_metadata_partition: format!("metadata_{PARTITION_SUFFIX}"), mmr_items_per_blob: ITEMS_PER_BLOB, mmr_write_buffer: WRITE_BUFFER_SIZE, log_partition: format!("log_journal_{PARTITION_SUFFIX}"), log_codec_config: (), log_items_per_blob: ITEMS_PER_BLOB, log_write_buffer: WRITE_BUFFER_SIZE, log_compression: None, translator: EightCap, thread_pool: Some(pool), buffer_pool: PoolRef::new(PAGE_SIZE, PAGE_CACHE_SIZE), } } /// Get an unordered fixed Any QMDB instance in clean state. async fn get_any_unordered_fixed(ctx: Context) -> UFixedDb { let pool = ctx.clone().create_pool(THREADS).unwrap(); let any_cfg = any_cfg(pool); UFixedDb::init(ctx, any_cfg).await.unwrap() } /// Get an ordered fixed Any QMDB instance in clean state. async fn get_any_ordered_fixed(ctx: Context) -> OFixedDb { let pool = ctx.clone().create_pool(THREADS).unwrap(); let any_cfg = any_cfg(pool); OFixedDb::init(ctx, any_cfg).await.unwrap() } /// Get an unordered variable Any QMDB instance in clean state. async fn get_any_unordered_variable(ctx: Context) -> UVAnyDb { let pool = ctx.clone().create_pool(THREADS).unwrap(); let variable_any_cfg = variable_any_cfg(pool); UVAnyDb::init(ctx, variable_any_cfg).await.unwrap() } /// Get an ordered variable Any QMDB instance in clean state. async fn get_any_ordered_variable(ctx: Context) -> OVAnyDb { let pool = ctx.clone().create_pool(THREADS).unwrap(); let variable_any_cfg = variable_any_cfg(pool); OVAnyDb::init(ctx, variable_any_cfg).await.unwrap() } /// Get an unordered current QMDB instance. async fn get_current_unordered_fixed(ctx: Context) -> UCurrentDb { let pool = ctx.clone().create_pool(THREADS).unwrap(); let current_cfg = current_cfg(pool); UCurrent::<_, _, _, Sha256, EightCap, CHUNK_SIZE>::init(ctx, current_cfg) .await .unwrap() } /// Get an ordered current QMDB instance. async fn get_current_ordered_fixed(ctx: Context) -> OCurrentDb { let pool = ctx.clone().create_pool(THREADS).unwrap(); let current_cfg = current_cfg(pool); OCurrent::<_, _, _, Sha256, EightCap, CHUNK_SIZE>::init(ctx, current_cfg) .await .unwrap() } /// Generate a large db with random data. The function seeds the db with exactly `num_elements` /// elements by inserting them in order, each with a new random value. Then, it performs /// `num_operations` over these elements, each selected uniformly at random for each operation. The /// database is committed after every `commit_frequency` operations (if Some), or at the end (if /// None). /// /// Takes a mutable database and returns it in durable state after final commit. async fn gen_random_kv( mut db: M, num_elements: u64, num_operations: u64, commit_frequency: Option, ) -> M::Durable where M: MutableAny + LogStore, M::Durable: UnmerkleizedDurableAny, { // Insert a random value for every possible element into the db. let mut rng = StdRng::seed_from_u64(42); for i in 0u64..num_elements { let k = Sha256::hash(&i.to_be_bytes()); let v = Sha256::hash(&rng.next_u32().to_be_bytes()); db.update(k, v).await.unwrap(); } // Randomly update / delete them + randomly commit. for _ in 0u64..num_operations { let rand_key = Sha256::hash(&(rng.next_u64() % num_elements).to_be_bytes()); if rng.next_u32() % DELETE_FREQUENCY == 0 { db.delete(rand_key).await.unwrap(); continue; } let v = Sha256::hash(&rng.next_u32().to_be_bytes()); db.update(rand_key, v).await.unwrap(); if let Some(freq) = commit_frequency { if rng.next_u32() % freq == 0 { let (durable, _) = db.commit(None).await.unwrap(); db = durable.into_mutable(); } } } let (durable, _) = db.commit(None).await.unwrap(); durable } async fn gen_random_kv_batched( mut db: M, num_elements: u64, num_operations: u64, commit_frequency: Option, ) -> M::Durable where M: MutableAny + LogStore, M::Durable: UnmerkleizedDurableAny, { let mut rng = StdRng::seed_from_u64(42); let mut batch = db.start_batch(); for i in 0u64..num_elements { let k = Sha256::hash(&i.to_be_bytes()); let v = Sha256::hash(&rng.next_u32().to_be_bytes()); batch.update(k, v).await.expect("update shouldn't fail"); } let iter = batch.into_iter(); db.write_batch(iter) .await .expect("write_batch shouldn't fail"); batch = db.start_batch(); for _ in 0u64..num_operations { let rand_key = Sha256::hash(&(rng.next_u64() % num_elements).to_be_bytes()); if rng.next_u32() % DELETE_FREQUENCY == 0 { batch.delete(rand_key).await.expect("delete shouldn't fail"); continue; } let v = Sha256::hash(&rng.next_u32().to_be_bytes()); batch .update(rand_key, v) .await .expect("update shouldn't fail"); if let Some(freq) = commit_frequency { if rng.next_u32() % freq == 0 { let iter = batch.into_iter(); db.write_batch(iter) .await .expect("write_batch shouldn't fail"); let (durable, _) = db.commit(None).await.expect("commit shouldn't fail"); db = durable.into_mutable(); batch = db.start_batch(); } } } let iter = batch.into_iter(); db.write_batch(iter) .await .expect("write_batch shouldn't fail"); let (durable, _) = db.commit(None).await.expect("commit shouldn't fail"); durable }