use crate::algebra::{msm_naive, Additive, CryptoGroup, Field, Object, Random, Ring, Space}; #[cfg(not(feature = "std"))] use alloc::{vec, vec::Vec}; use commonware_codec::{EncodeSize, RangeCfg, Read, Write}; use commonware_parallel::Strategy; use commonware_utils::{non_empty_vec, ordered::Map, vec::NonEmptyVec, TryCollect}; use core::{ fmt::Debug, iter, num::NonZeroU32, ops::{Add, AddAssign, Mul, MulAssign, Neg, Sub, SubAssign}, }; use rand_core::CryptoRngCore; // SECTION: Performance knobs. const MIN_POINTS_FOR_MSM: usize = 2; /// A polynomial, with coefficients in `K`. #[derive(Clone)] pub struct Poly { // Invariant: (1..=u32::MAX).contains(coeffs.len()) coeffs: NonEmptyVec, } impl Poly { fn len(&self) -> NonZeroU32 { self.coeffs .len() .try_into() .expect("Impossible: polynomial length not in 1..=u32::MAX") } const fn len_usize(&self) -> usize { self.coeffs.len().get() } /// Internal method to construct a polynomial from an iterator. /// /// This will panic if the iterator does not return any coefficients, /// so make sure that the iterator you pass to this function does that. fn from_iter_unchecked(iter: impl IntoIterator) -> Self { let coeffs = iter .into_iter() .try_collect::>() .expect("polynomial must have a least 1 coefficient"); Self { coeffs } } /// The degree of this polynomial. /// /// Technically, this is only an *upper bound* on the degree, because /// this method does not inspect the coefficients of a polynomial to check /// if they're non-zero. /// /// Because of this, it's possible that two polynomials /// considered equal have different degrees. /// /// For that behavior, see [`Self::degree_exact`]. pub fn degree(&self) -> u32 { self.len().get() - 1 } /// Return the number of evaluation points required to recover this polynomial. /// /// In other words, [`Self::degree`] + 1. pub fn required(&self) -> NonZeroU32 { self.len() } /// Return the constant value of this polynomial. /// /// I.e. the first coefficient. pub fn constant(&self) -> &K { &self.coeffs[0] } /// Translate the coefficients of this polynomial. /// /// This applies some kind of map to each coefficient, creating a new /// polynomial. pub fn translate(&self, f: impl Fn(&K) -> L) -> Poly { Poly { coeffs: self.coeffs.map(f), } } /// Evaluate a polynomial at a particular point. /// /// For /// /// `p(X) := a_0 + a_1 X + a_2 X^2 + ...` /// /// this returns: /// /// `a_0 + a_1 r + a_2 r^2 + ...` /// /// This can work for any type which can multiply the coefficients of /// this polynomial. /// /// For example, if you have a polynomial consistent of elements of a group, /// you can evaluate it using a scalar over that group. pub fn eval(&self, r: &R) -> K where K: Space, { let mut iter = self.coeffs.iter().rev(); // Evaluation using Horner's method. // // p(r) // = a_0 + a_1 r + ... + a_n r^N = // = a_n r^n + ... // = ((a_n) r + a_(n - 1))r + ...) let mut acc = iter .next() .expect("Impossible: Polynomial has no coefficients") .clone(); for coeff in iter { acc *= r; acc += coeff; } acc } /// Like [`Self::eval`], but using [`Space::msm`]. /// /// This method uses more scratch space, and requires cloning values of /// type `R` more, but should be better if [`Space::msm`] has a better algorithm /// for `K`. pub fn eval_msm(&self, r: &R, strategy: &impl Strategy) -> K where K: Space, { // Contains 1, r, r^2, ... let weights = { let len = self.len_usize(); let mut out = Vec::with_capacity(len); out.push(R::one()); let mut acc = R::one(); for _ in 1..len { acc *= r; out.push(acc.clone()); } out }; K::msm(&self.coeffs, &weights, strategy) } } impl Debug for Poly { fn fmt(&self, f: &mut core::fmt::Formatter<'_>) -> core::fmt::Result { write!(f, "Poly(")?; for (i, c) in self.coeffs.iter().enumerate() { if i > 0 { write!(f, " + {c:?} X^{i}")?; } else { write!(f, "{c:?}")?; } } write!(f, ")")?; Ok(()) } } impl EncodeSize for Poly { fn encode_size(&self) -> usize { self.coeffs.encode_size() } } impl Write for Poly { fn write(&self, buf: &mut impl bytes::BufMut) { self.coeffs.write(buf); } } impl Read for Poly { type Cfg = (RangeCfg, ::Cfg); fn read_cfg( buf: &mut impl bytes::Buf, cfg: &Self::Cfg, ) -> Result { Ok(Self { coeffs: NonEmptyVec::::read_cfg(buf, &(cfg.0.into(), cfg.1.clone()))?, }) } } impl Poly { // Returns a new polynomial of the given degree where each coefficient is // sampled at random from the provided RNG. pub fn new(mut rng: impl CryptoRngCore, degree: u32) -> Self { Self::from_iter_unchecked((0..=degree).map(|_| K::random(&mut rng))) } /// Returns a new scalar polynomial with a particular value for the constant coefficient. /// /// This does the same thing as [`Poly::new`] otherwise. pub fn new_with_constant(mut rng: impl CryptoRngCore, degree: u32, constant: K) -> Self { Self::from_iter_unchecked( iter::once(constant).chain((0..=degree).skip(1).map(|_| K::random(&mut rng))), ) } } /// An equality test taking into account high 0 coefficients. /// /// Without this behavior, the additive test suite does not past, because /// `x - x` may result in a polynomial with extra 0 coefficients. impl PartialEq for Poly { fn eq(&self, other: &Self) -> bool { let zero = K::zero(); let max_len = self.len().max(other.len()); let self_then_zeros = self.coeffs.iter().chain(iter::repeat(&zero)); let other_then_zeros = other.coeffs.iter().chain(iter::repeat(&zero)); self_then_zeros .zip(other_then_zeros) .take(max_len.get() as usize) .all(|(a, b)| a == b) } } impl Eq for Poly {} impl Poly { fn merge_with(&mut self, rhs: &Self, f: impl Fn(&mut K, &K)) { self.coeffs .resize(self.coeffs.len().max(rhs.coeffs.len()), K::zero()); self.coeffs .iter_mut() .zip(&rhs.coeffs) .for_each(|(a, b)| f(a, b)); } /// Like [`Self::degree`], but checking for zero coefficients. /// /// This method is slower, but reports exact results in case there are zeros. /// /// This will return 0 for a polynomial with no coefficients. pub fn degree_exact(&self) -> u32 { let zero = K::zero(); let leading_zeroes = self.coeffs.iter().rev().take_while(|&x| x == &zero).count(); let lz_u32 = u32::try_from(leading_zeroes).expect("Impossible: Polynomial has >= 2^32 coefficients"); // The saturation is critical, otherwise you get a negative number for // the zero polynomial. self.degree().saturating_sub(lz_u32) } } impl Object for Poly {} // SECTION: implementing Additive impl<'a, K: Additive> AddAssign<&'a Self> for Poly { fn add_assign(&mut self, rhs: &'a Self) { self.merge_with(rhs, |a, b| *a += b); } } impl<'a, K: Additive> Add<&'a Self> for Poly { type Output = Self; fn add(mut self, rhs: &'a Self) -> Self::Output { self += rhs; self } } impl<'a, K: Additive> SubAssign<&'a Self> for Poly { fn sub_assign(&mut self, rhs: &'a Self) { self.merge_with(rhs, |a, b| *a -= b); } } impl<'a, K: Additive> Sub<&'a Self> for Poly { type Output = Self; fn sub(mut self, rhs: &'a Self) -> Self::Output { self -= rhs; self } } impl Neg for Poly { type Output = Self; fn neg(self) -> Self::Output { Self { coeffs: self.coeffs.map_into(Neg::neg), } } } impl Additive for Poly { fn zero() -> Self { Self { coeffs: non_empty_vec![K::zero()], } } } // SECTION: implementing Space. impl<'a, R, K: Space> MulAssign<&'a R> for Poly { fn mul_assign(&mut self, rhs: &'a R) { self.coeffs.iter_mut().for_each(|c| *c *= rhs); } } impl<'a, R, K: Space> Mul<&'a R> for Poly { type Output = Self; fn mul(mut self, rhs: &'a R) -> Self::Output { self *= rhs; self } } impl + Send> Space for Poly { fn msm(polys: &[Self], scalars: &[R], strategy: &impl Strategy) -> Self { if polys.len() < MIN_POINTS_FOR_MSM { return msm_naive(polys, scalars); } let cols = polys.len().min(scalars.len()); let polys = &polys[..cols]; let scalars = &scalars[..cols]; let rows = polys .iter() .map(|x| x.len_usize()) .max() .expect("at least 1 point"); let coeffs = strategy.map_init_collect_vec( 0..rows, || Vec::with_capacity(cols), |row, i| { row.clear(); for p in polys { row.push(p.coeffs.get(i).cloned().unwrap_or_else(K::zero)); } K::msm(row, scalars, strategy) }, ); Self::from_iter_unchecked(coeffs) } } impl Poly { /// Commit to a polynomial of scalars, producing a polynomial of group elements. pub fn commit(p: Poly) -> Self { p.translate(|c| G::generator() * c) } } /// An interpolator allows recovering a polynomial's constant from values. /// /// This is useful for polynomial secret sharing. There, a secret is stored /// in the constant of a polynomial. Shares of the secret are created by /// evaluating the polynomial at various points. Given enough values for /// these points, the secret can be recovered. /// /// Using an [`Interpolator`] can be more efficient, because work can be /// done in advance based only on the points that will be used for recovery, /// before the value of the polynomial at these points is known. The interpolator /// can use these values to recover the secret at a later time. /// /// ### Usage /// /// ``` /// # use commonware_math::{fields::goldilocks::F, poly::{Poly, Interpolator}}; /// # use commonware_parallel::Sequential; /// # use commonware_utils::TryCollect; /// # fn example(f: Poly, g: Poly, p0: F, p1: F) { /// let interpolator = Interpolator::new([(0, p0), (1, p1)]); /// assert_eq!( /// Some(*f.constant()), /// interpolator.interpolate(&[(0, f.eval(&p0)), (1, f.eval(&p1))].into_iter().try_collect().unwrap(), &Sequential) /// ); /// assert_eq!( /// Some(*g.constant()), /// interpolator.interpolate(&[(1, g.eval(&p1)), (0, g.eval(&p0))].into_iter().try_collect().unwrap(), &Sequential) /// ); /// # } /// ``` pub struct Interpolator { weights: Map, } impl Interpolator { /// Interpolate a polynomial's evaluations to recover its constant. /// /// The indices provided here MUST match those provided to [`Self::new`] exactly, /// otherwise `None` will be returned. pub fn interpolate>( &self, evals: &Map, strategy: &impl Strategy, ) -> Option { if evals.keys() != self.weights.keys() { return None; } Some(K::msm(evals.values(), self.weights.values(), strategy)) } } impl Interpolator { /// Create a new interpolator, given an association from indices to evaluation points. /// /// If an index appears multiple times, the implementation is free to use /// any one of the evaluation points associated with that index. In other words, /// don't do that, or ensure that if, for some reason, an index appears more /// than once, then it has the same evaluation point. pub fn new(points: impl IntoIterator) -> Self { let points = Map::from_iter_dedup(points); let n = points.len(); if n == 0 { return Self { weights: points }; } // Compute W = product of all w_i // Compute c_i = w_i * product((w_j - w_i) for j != i) let values = points.values(); let zero = F::zero(); let mut total_product = F::one(); let mut c = Vec::with_capacity(n); for (i, w_i) in values.iter().enumerate() { // If evaluation point is zero, L_i(0) = 1 for this point and 0 for all others. if w_i == &zero { let mut out = points; for (j, w) in out.values_mut().iter_mut().enumerate() { *w = if j == i { F::one() } else { F::zero() }; } return Self { weights: out }; } // Accumulate c_i = w_i * product((w_j - w_i) for j != i) for batch inversion. total_product *= w_i; let mut c_i = w_i.clone(); for w_j in values .iter() .enumerate() .filter_map(|(j, v)| (j != i).then_some(v)) { c_i *= &(w_j.clone() - w_i); } c.push(c_i); } // Batch inversion using Montgomery's trick to compute W/c_i for all i // Step 1: Compute prefix products (prefix[i] = c[0] * ... * c[i-1]) let mut prefix = Vec::with_capacity(n + 1); prefix.push(F::one()); let mut acc = F::one(); for c_i in &c { acc *= c_i; prefix.push(acc.clone()); } // Step 2: Single inversion, multiplied by W let mut inv_acc = total_product * &prefix[n].inv(); // Step 3: Compute weights directly into output let mut out = points; let out_vals = out.values_mut(); for i in (0..n).rev() { out_vals[i] = inv_acc.clone() * &prefix[i]; inv_acc *= &c[i]; } Self { weights: out } } } #[cfg(feature = "arbitrary")] mod fuzz { use super::*; use arbitrary::Arbitrary; impl<'a, F: Arbitrary<'a>> Arbitrary<'a> for Poly { fn arbitrary(u: &mut arbitrary::Unstructured<'a>) -> arbitrary::Result { Ok(Self { coeffs: u.arbitrary()?, }) } } } #[cfg(test)] mod test { use super::*; use crate::test::{F, G}; use commonware_codec::Encode; use commonware_parallel::Sequential; use proptest::{ prelude::{Arbitrary, BoxedStrategy, Strategy as _}, prop_assume, proptest, sample::SizeRange, }; impl Arbitrary for Poly { type Parameters = SizeRange; type Strategy = BoxedStrategy; fn arbitrary_with(size: Self::Parameters) -> Self::Strategy { let nonempty_size = if size.start() == 0 { size + 1 } else { size }; proptest::collection::vec(F::arbitrary(), nonempty_size) .prop_map(Self::from_iter_unchecked) .boxed() } } #[test] fn test_additive() { crate::algebra::test_suites::test_additive(file!(), &Poly::::arbitrary()); } #[test] fn test_space() { crate::algebra::test_suites::test_space_ring( file!(), &F::arbitrary(), &Poly::::arbitrary(), ); } #[test] fn test_eq() { fn eq(a: &[u8], b: &[u8]) -> bool { Poly { coeffs: a.iter().copied().map(F::from).try_collect().unwrap(), } == Poly { coeffs: b.iter().copied().map(F::from).try_collect().unwrap(), } } assert!(eq(&[1, 2], &[1, 2])); assert!(!eq(&[1, 2], &[2, 3])); assert!(!eq(&[1, 2], &[1, 2, 3])); assert!(!eq(&[1, 2, 3], &[1, 2])); assert!(eq(&[1, 2], &[1, 2, 0, 0])); assert!(eq(&[1, 2, 0, 0], &[1, 2])); assert!(!eq(&[1, 2, 0], &[2, 3])); assert!(!eq(&[2, 3], &[1, 2, 0])); } proptest! { #[test] fn test_codec(f: Poly) { assert_eq!(&f, &Poly::::read_cfg(&mut f.encode(), &(RangeCfg::exact(f.required()), ())).unwrap()) } #[test] fn test_eval_add(f: Poly, g: Poly, x: F) { assert_eq!(f.eval(&x) + &g.eval(&x), (f + &g).eval(&x)); } #[test] fn test_eval_scale(f: Poly, x: F, w: F) { assert_eq!(f.eval(&x) * &w, (f * &w).eval(&x)); } #[test] fn test_eval_zero(f: Poly) { assert_eq!(&f.eval(&F::zero()), f.constant()); } #[test] fn test_eval_msm(f: Poly, x: F) { assert_eq!(f.eval(&x), f.eval_msm(&x, &Sequential)); } #[test] fn test_interpolate(f: Poly) { // Make sure this isn't the zero polynomial. prop_assume!(f != Poly::zero()); prop_assume!(f.required().get() < F::MAX as u32); let mut points = (0..f.required().get()).map(|i| F::from((i + 1) as u8)).collect::>(); let interpolator = Interpolator::new(points.iter().copied().enumerate()); let evals = Map::from_iter_dedup(points.iter().map(|p| f.eval(p)).enumerate()); let recovered = interpolator.interpolate(&evals, &Sequential); assert_eq!(recovered.as_ref(), Some(f.constant())); points.pop(); assert!(interpolator.interpolate(&Map::from_iter_dedup(points.iter().map(|p| f.eval(p)).enumerate()), &Sequential).is_none()); } #[test] fn test_interpolate_with_zero_point(f: Poly) { // Use 0, 1, 2, ... as evaluation points (first point is zero) prop_assume!(f != Poly::zero()); prop_assume!(f.required().get() < F::MAX as u32); let points: Vec<_> = (0..f.required().get()).map(|i| F::from(i as u8)).collect(); let interpolator = Interpolator::new(points.iter().copied().enumerate()); let evals = Map::from_iter_dedup(points.iter().map(|p| f.eval(p)).enumerate()); let recovered = interpolator.interpolate(&evals, &Sequential); assert_eq!(recovered.as_ref(), Some(f.constant())); } #[test] fn test_interpolate_with_zero_point_middle(f: Poly) { // Use 1, 2, ..., 0 as evaluation points (zero at last position) prop_assume!(f != Poly::zero()); prop_assume!(f.required().get() >= 2); prop_assume!(f.required().get() < F::MAX as u32); let n = f.required().get(); let points: Vec<_> = (1..n).map(|i| F::from(i as u8)).chain(core::iter::once(F::zero())).collect(); let interpolator = Interpolator::new(points.iter().copied().enumerate()); let evals = Map::from_iter_dedup(points.iter().map(|p| f.eval(p)).enumerate()); let recovered = interpolator.interpolate(&evals, &Sequential); assert_eq!(recovered.as_ref(), Some(f.constant())); } #[test] fn test_translate_scale(f: Poly, x: F) { assert_eq!(f.translate(|c| x * c), f * &x); } #[test] fn test_commit_eval(f: Poly, x: F) { assert_eq!(G::generator() * &f.eval(&x), Poly::::commit(f).eval(&x)); } } #[cfg(feature = "arbitrary")] mod conformance { use super::*; use commonware_codec::conformance::CodecConformance; commonware_conformance::conformance_tests! { CodecConformance> } } }